2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。
一、夏普莱斯:两次获得诺贝尔化学奖
2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。
今年,他第二次获奖的「点击化学」,同样与药物合成有关。
1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。
过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。
虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。
虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。
有机催化是一个复杂的过程,涉及到诸多的步骤。
任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。
不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。
为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。
点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。
点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。
夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。
大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。
大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。
大自然的一些催化过程,人类几乎是不可能完成的。
一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。
夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?
大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。
在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。
其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。
诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:
夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。
他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。
「点击化学」的工作,建立在严格的实验标准上:
反应必须是模块化,应用范围广泛
具有非常高的产量
仅生成无害的副产品
反应有很强的立体选择性
反应条件简单(理想情况下,应该对氧气和水不敏感)
原料和试剂易于获得
不使用溶剂或在良性溶剂中进行(最好是水),且容易移除
可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定
反应需高热力学驱动力(>84kJ/mol)
符合原子经济
夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。
他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。
二、梅尔达尔:筛选可用药物
夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。
他就是莫滕·梅尔达尔。
梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。
为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。
他日积月累地不断筛选,意图筛选出可用的药物。
在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。
三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。
2002年,梅尔达尔发表了相关论文。
夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。
三、贝尔托齐西:把点击化学运用在人体内
不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。
虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。
诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。
她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。
这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。
卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。
20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。
然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。
当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。
后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。
由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。
经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。
巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。
虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。
就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。
她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。
大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。
2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。
贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。
在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。
目前该药物正在晚期癌症病人身上进行临床试验。
不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。
「 点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)
参考
https://www.nobelprize.org/prizes/chemistry/2001/press-release/
Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.
Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.
Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.
https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf
https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf
Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.
莫再等闲视之!挖矿病毒其实与你近在咫尺******
近年来,由于虚拟货币的暴涨,受利益驱使,黑客也瞄准了虚拟货币市场,其利用挖矿脚本来实现流量变现,使得挖矿病毒成为不法分子利用最为频繁的攻击方式之一。
由亚信安全梳理的《2021年度挖矿病毒专题报告》(简称《报告》)显示,在过去的一年,挖矿病毒攻击事件频发,亚信安全共拦截挖矿病毒516443次。从2021年1月份开始,挖矿病毒有减少趋势,5月份开始,拦截数量逐步上升,6月份达到本年度峰值,拦截次数多达177880次。通过对数据进行分析发现,6月份出现了大量挖矿病毒变种,因此导致其数据激增。
不仅老病毒变种频繁,新病毒也层出不穷。比如,有些挖矿病毒为获得利益最大化,攻击企业云服务器;有些挖矿病毒则与僵尸网络合作,快速抢占市场;还有些挖矿病毒在自身技术上有所突破,利用多种漏洞攻击方法。不仅如此,挖矿病毒也在走创新路线,伪造CPU使用率,利用Linux内核Rootkit进行隐秘挖矿等。
从样本数据初步分析来看,截止到2021年底,一共获取到的各个家族样本总数为12477248个。其中,Malxmr家族样本总共收集了约300万个,占比高达67%,超过了整个挖矿家族收集样本数量的一半;Coinhive家族样本一共收集了约84万个,占比达到18%;Toolxmr家族样本一共收集了约64万个,占比达到14%。排名前三位的挖矿病毒占据了整个挖矿家族样本个数的99%。
挖矿病毒主要危害有哪些?
一是能源消耗大,与节能减排相悖而行。
虽然挖矿病毒单个耗电量不高,能耗感知性不强,但挖矿病毒相比于专业“挖矿”,获得同样算力价值的前提下,耗电量是后者的500倍。
二是降低能效,影响生产。
挖矿病毒最容易被感知到的影响就是机器性能会出现严重下降,影响业务系统的正常运行,严重时可能出现业务系统中断或系统崩溃。直接影响企业生产,给企业带来巨大经济损失。
三是失陷主机沦为肉鸡,构建僵尸网络。
挖矿病毒往往与僵尸网络紧密结合,在失陷主机感染挖矿病毒的同时,可能已经成为黑客控制的肉鸡电脑,黑客利用失陷主机对网内其他目标进行攻击,这些攻击包括内网横向攻击扩散、对特定目标进行DDoS攻击、作为黑客下一步攻击的跳板、将失陷主机作为分发木马的下载服务器或C&C服务器等。
四是失陷主机给企业带来经济及名誉双重损失。
失陷主机在感染挖矿病毒同时,也会被安装后门程序,远程控制软件等。这些后门程序长期隐藏在系统中,达到对失陷主机的长期控制目的,可以向主机中投放各种恶意程序,盗取服务器重要数据,使受害企业面临信息泄露风险。不仅给而企业带来经济损失,还会带来严重的名誉损失。
2021年挖矿病毒家族分布
挖矿病毒如何进入系统而最终获利?
挖矿病毒攻击杀伤链包括:侦察跟踪、武器构建、横向渗透、荷载投递、安装植入、远程控制和执行挖矿七个步骤。
通俗地说,可以这样理解:
攻击者首先搜寻目标的弱点
↓
使用漏洞和后门制作可以发送的武器载体,将武器包投递到目标机器
↓
在受害者的系统上运行利用代码,并在目标位置安装恶意软件,为攻击者建立可远程控制目标系统的路径
↓
释放挖矿程序,执行挖矿,攻击者远程完成其预期目标。
图片来源网络
挖矿病毒攻击手段不断创新,呈现哪些新趋势?
●漏洞武器和爆破工具是挖矿团伙最擅长使用的入侵武器,他们使用新漏洞武器的速度越来越快,对防御和安全响应能力提出了更高要求;
●因门罗币的匿名性极好,已经成为挖矿病毒首选货币。同时“无文件”“隐写术”等高级逃逸技术盛行,安全对抗持续升级;
●国内云产业基础设施建设快速发展,政府和企业积极上云,拥有庞大数量工业级硬件的企业云和数据中心将成为挖矿病毒重点攻击目标;
●为提高挖矿攻击成功率,一方面挖矿病毒采用了Windows和Linux双平台攻击;另一方面则持续挖掘利益最大化“矿机”,引入僵尸网络模块,使得挖矿病毒整体的攻击及传播能力得到明显的提升。
用户如何做好日常防范?
1、优化服务器配置并及时更新
开启服务器防火墙,服务只开放业务端口,关闭所有不需要的高危端口。比如,137、138、445、3389等。
关闭服务器不需要的系统服务、默认共享。
及时给服务器、操作系统、网络安全设备、常用软件安装最新的安全补丁,及时更新 Web 漏洞补丁、升级Web组件,防止漏洞被利用,防范已知病毒的攻击。
2、强口令代替弱密码
设置高复杂度密码,并定期更换,多台主机不使用同一密码。
设置服务器登录密码强度和登录次数限制。
在服务器配置登录失败处理功能,配置并启用结束会话、限制非法登录次数和当登录次数链接超时自动退出等相关防范措施。
3、增强网络安全意识
加强所有相关人员的网络安全培训,提高网络安全意识。
不随意点击来源不明的邮件、文档、链接,不要访问可能携带病毒的非法网站。
若在内部使用U盘,需要先进行病毒扫描查杀,确定无病毒后再完全打开使用。
(策划:李政葳 制作:黎梦竹)
(文图:赵筱尘 巫邓炎)